Exposure assessment of a weaving process of CNT-coated yarn by applying carbon analysis

M.Ono-Ogasawara¹, M.Takaya¹, H.Kubota¹, Y.Shinohara¹, E.Akiba², S.Tsuruoka³, S.Koda¹ 1 Japan NIOSH 2 Kuraray Living Co., Ltd 3 Shinshu University

Objects

• Exposure assessment to CNT or CNT containing particles in a workplace of downstream users

Procedure of monitoring

- Deciding the sampling points
 - where higher stress is given to the yarn both airborne and wipe
- Real-time monitoring by SMPS, CPC, OPC
- Sampling for SEM observation (Qualification)
- Sampling for carbon and mass measurement (Quantification)
- Analysis of the data

Views around the loom

From operator's side

Rear side

Sampling points

- Number of the loom weaving CNTEC
 1
- Number of the looms weaving polyester yarn >15

Results: Real-time monitoring

No relationship between number concentration and weaving process

InnoCNT 2011Nov30

Results: Size distribution

- Size distribution and concentration of nanoparticles are similar at inside and outside
- Nanoparticles are observed in the afternoon Origins of nanoparticles are outside, photochemically generated secondary

Results: SEM observation

- During weaving
 - Micron-size
 CNTEC fragments
 - Nanosize particles exist?
- How to determine CNT and CNT containing particles?

with weaving

Carbon monitor

Protocol for carbon analysis

		Time (sec)	Oven temperature(°C)	Atmospheric gas
	OC1	180	120	He
	OC2	180	250	He
	OC3	300	450	He
	OC4	300	550	He
	EC1	360	550	He/5% O ₂
Graphitic carbon	EC2	360 - 600	700	He/5% O ₂
	EC3	600	920	He/5% O ₂

OC: Organic carbon, EC: Elemental carbon

Concept for distinguishing MWCNT

InnoCNT 2011Nov30

Baytube EC2 temperature setting at 700°C

Protocol for carbon analysis

	Time (sec)	Oven temperature(°C)	Atmospheric gas
OC1	180	120	He
OC2	180	250	He
OC3	300	450	He
OC4	300	550	He
EC1	360	550	He/5% O ₂
EC2	360 - 600	600	He/5% O ₂
EC3	600	920	He/5% O ₂

OC: Organic carbon, EC: Elemental carbon

Baytube EC2 temperature setting at 600°C

Sample preparation for TEM CNTEC embedded resin block

Before carbon analysis

EC3 after EC2 burned

InnoCNT 2011Nov30

EC3 left after EC2 burned

Optical micrograph

Polyester was not observed

InnoCNT 2011Nov30

EC3 left after EC2 burned

After burning,

- CNT becomes thinner
- Density of CNT coating becomes less dense

Calibration curves by coating solution

coating solution

Typical thermograms of collected samples

Sample: area sampling collected at sampling point 2, close to the weaving surface Size: 2.5–6.6 µm Sample: wiped sample collected on the surface near physical stress given to CNTEC

MWCNT concentrations

- MWCNT mainly contained in fragments of CNTEC
- EC3 concentration (μg/m³) Background (night) 1.2 other looms for polyester yarn working Background (working time) 2.7 far from the CNTEC loom, affected by outside air 4.4 - 4.6Sampling point 1 2 m away from the loom 5.3 Sampling point 2 close to the weaving surface • Respirable (<4 μ m) mass concentration 66 personal sampling

Summary

- Real-time monitoring did not show any relationship with the present process.
- MWCNTs are quantified by carbon analysis with IMPROVE method.
- MWCNTs in CNTEC can be determined by EC3.
- EC3 can be an index of MWCNT, even if perfect separation of MWCNT from polyester and ambient particles is difficult.
- SEM/TEM observation is necessary.
- Protocol of carbon analysis should be considered for each target CNT because there are varieties of MWCNTs.