法尻部掘削における斜面崩壊防止対策のための

土圧算定に関する一考察

伊藤和也*1

1 目的

道路拡張工事や急傾斜地対策工事では,重力式擁壁な どの対策工を設置して最終的な安定性を向上させるケー スが多く見られる.しかし,これらの施工中では,法面 勾配を従前より一時的に急勾配とする切土掘削作業や, 床付けに伴う法尻部の掘削作業などが行われており,施 工中では,崩壊危険性が高い状態が続くことになる.そ のため,床掘り箇所などに簡易的な土止めを行う場合が あるが,実際に斜面が崩壊した場合には,効果がなく被 災するケースが見られる(図1参照).そのため,崩壊 を抑制しうる土止め壁とするためには,崩壊した際に土 止め壁に作用する土圧を把握する必要がある.

本研究では,斜面法尻部に発生する土圧について擁壁 での土圧計算方法の一つである試行くさび法によって検 討した後,幾つかのパラメーターを変化させた遠心模型 実験から,崩壊形状や作用土圧について試行くさび法で 得られる結果と比較した.

2 方法

道路拡張工事や急傾斜地対策工事では,重力式擁壁な どの対策工を設置して最終的な安定性を向上させるケー スが多く見られる.しかし,これらの施工中では,法面 勾配を従前より一時的に急勾配とする切土掘削作業や, 床付けに伴う法尻部の掘削作業などが行われており,施 工中では,崩壊危険性が高い状態が続くことになる.床 掘り箇所などに簡易的な土止めを行う場合があるが,効 果がなく斜面が崩壊し被災するケースが見られる(図1 参照).そのため,崩壊を抑制しうる土止め壁とするため には,崩壊時に土止め壁に作用する土圧を把握する必要 がある.

本研究では,斜面法尻部に発生する土圧について擁壁 での土圧計算方法の一つである試行くさび法によって検 討した後,幾つかのパラメーターを変化させた遠心模型 実験で得られた崩壊形状や作用土圧を,試行くさび法で 得られた結果と比較した.

3 斜面法尻部に発生する土圧の算定 1) 擁壁での土圧計算方法

溝掘削の土止めに関して,仮設構造物の土圧算定式は 存在する.しかしながら,斜面の法尻部を対策するもの は無い.そこで,ここでは,永久構造物である重力式擁

*1 (独)労働安全衛生総合研究所.
連絡先:〒204-0024 東京都清瀬市梅園 1-4-6
(独)労働安全衛生総合研究所 建設安全研究グループ 伊藤和也*1
E-mail: k-ito@s. jniosh.go.jp

壁における設計の土圧計算を援用する.重力式擁壁にお ける設計では,擁壁に作用する土圧はすべり面を正しく 想定し,斜面の全体的な範囲を対象として土圧を検討す ることが必要である.想定されるすべり面の形状として は,

- 1. 円弧すべり面 (図 2(a))
- 2. 直線すべり面 (図 2(b))
- 3. 複合すべり面 (図 2(a))

が考えられる. これらの中で,円弧すべり土塊による土 圧計算は,繰り返しによる円弧すべり計算から擁壁設置 時の断面で計画安全率となるような抑止力(求めるべき 土圧)を計算する.直線すべり土塊による土圧計算では, すべり面を特定して計算を行う場合とすべり面の角度を 試行的に変化させて最大土圧力を求め主働土圧力とする 場合がある.後者は,試行くさび法と呼ばれており,道 路土工・擁壁工指針(日本道路協会),土地改良事業計画

【崩壊後】

図1 簡易な土止めが機能せず崩壊した災害事例

設計基準(農林水産省構造改善局),建設基礎構造設計指 針(日本建築学会)など我が国の設計技術基準の多くに 採用されている.本報では,試行くさび法による土圧計 算を援用することとした.

2) 試行くさび法による土圧計算

試行くさび法は、すべり面の角度を試行的に変化させ て最大土圧力を求め主働土圧力とする方法であり、形状 や土質が均一な半無限地盤においてすべり面を直線と仮 定した場合は、クーロン土圧と同じ解を与える.しかし、 地表面や壁背面土が一様でなくクーロン土圧が適用でき ない箇所においても土圧を計算できるため、実務での適 用性は高い.実際の主働すべり面は、曲線になるが、試 行くさび法はすべり線を直線と仮定して土圧を計算して いる.主働すべり面が直線になるのは、①壁面が鉛直で かつ滑らか、②土の内部摩擦角が深さ方向に一定という 二つの条件を満たす場合に限られる.実際には、壁面摩 擦角があり、内部摩擦力は盛土の重量の影響を受けて深 さ方向に減少するので、実際の主働すべり面は曲線を描 くことになり、斜面高さが高い場合には土圧を過大に評 価する恐れがある.

4 遠心模型実験による土圧計測実験

図 3 遠心模型実験装置((独)労働安全衛生総合研究所所有)

斜面崩壊に限らず実物大規模で行う実験は、コスト・ 時間・手間・安全性の制約がある.地盤工学分野では、 これらの制約を解消する一手法として、遠心模型実験手 法が開発され発展してきた.ここでは、遠心模型実験手 法について概説し、本手法を用いて斜面法尻部に発生す る土圧計測を行った結果について示す.

1) 遠心模型実験について

遠心模型実験装置の概形は、図3のようなものである. 回転する主桁(ビーム)の端部にプラットホームと呼ば れる"ぶらんこ"があり、そこにあらかじめ作製した模 型地盤を搭載する.その状態からビームを高速(毎分20 回転から150回転)で回転させると、地球の重力加速度 と遠心加速度の合計加速度の方向にプラットホームが振 り上がる (図 4). 重力は遠心力よりも十分に小さいため, 合計加速度はほぼ水平方向に働いて、模型地盤の鉛直下 向きに加速度が作用する仕組みとなっている. 地盤を構 成する土の変形・破壊特性は,一般的に拘束圧によって 著しく変化する.したがって、模型の土要素に実物の土 要素と同じ変形・強度を発揮させるためには拘束圧を実 物と同じにすることが必要となる.遠心模型実験手法は, 遠心力を重力と見立てて縮尺模型に働く重力をあたかも 現場と同じにすることができる実験手法であり、海上空 港埋め立ての圧密沈下挙動、斜面崩壊問題、掘削工事・ トンネル工事の変形問題のような静的問題から、地中構 造物・杭基礎構造物の地震時安定問題のような動的問題 に至るまで、地盤を扱う研究では様々な分野において取 り入れられ、破壊や変形メカニズムの解明のために利用 されている.

2) 実験方法

実験に使用した遠心模型実験装置は(独)労働安全衛生 総合研究所所有の遠心模型実験装置である(図 3).本遠心 模型実験装置の詳細については,文献⁸⁰に詳しい.

(模型容器には重力のみ作用)

図4 遠心模型実験の回転の様子

(模型容器には遠心力と重力の合力が作用)

58

実験は、斜面角度を45 と60 の2種類とし、それ ぞれ実地盤高さが5mとなるように遠心加速度25G場に て実施した.また、斜面角度を60 としたケースでは、 湿潤密度の影響を確認するために締固め圧力を調整し, 合計3ケースの実験を行なった(表1).なお、実験に使

表1 実験ケース			
ケース	湿潤密度	含水比	斜面角度
	ρ _t (g/cm ³)	w (%)	β (deg)
1	1.59	16.8	60
2	1.64	16.4	60
3	1.60	15.8	45

図5 実験概略図

(a) 崩壊状況 用した試料は,所定の含水比に調整した成田砂である. 計測は、土止め壁に作用する土圧計測が可能で、土止め 壁が稼動する装置を構築した(図5).実験は土止め壁を -方向に微小に移動させることで、斜面崩壊時に作用す る土圧の測定を行なった.なお、土止め壁は図5に示す ように3つに分割した構造をしており、それぞれに水平・ 鉛直方向に計測可能なロードセルが施してある. これら を、上から荷重計①,荷重計②,荷重計③とする.また、 斜面の変形挙動を接触型変位計にて計測した. なお, 以 降の結果については全て実地盤換算にて表記する.

3) 実験結果

実験にて計測した土圧と試行くさび法にて得られる土 圧を比較した.また、崩壊形状について崩壊時のすべり 線に着目して考察した.

(1) 崩壊状況とすべり線について

図 6~8 に各ケースにおける崩壊状況および崩壊時の すべり線を試行くさび法で得られたすべり線とともに示 す.以下にケース毎の結果を示す.

まず、ケース1の結果を図6に示す.受圧面を移動さ せた直後から法尻部付近から変形し、図 6(b)のように法 尻部と天端付近で明瞭なすべり線を形成した.法尻部に 発現したすべり線は、法尻部から高さ1.0m まで試行く さび法で得られるすべり線とほぼ一致する結果となった.

図8 ケース3の実験結果

図9 受圧面に掛かる各位置の土圧と移動変位量の関係

それより上部では明瞭なすべり線は現れず,周辺領域が 全体として変形する傾向が見られた.これは,地盤が塊 となって挙動していないことを示唆している.また,受 圧面の移動により斜面全体が変形し,天端付近では深さ 1m 程度の引張亀裂が発生した.Tamrakarらは土の引 張強度について詳細な検討を行い,成田砂の引張強度は 約 1.5kPa と小さいことを示しており³⁰,このような試 料の特性により,微小変形にもかかわらず引張亀裂が発 現したものと思われる. 次に、ケース2の結果を図7に示す.受圧面を移動させてから若干の時間差の後,法尻部から高さ2.5mにかけて小さな土塊として崩壊した(図7(a)①).その後,上部の土塊が追随して崩壊に至った(図7(a)②).ケース2 についてもケース1と同様に実験で得られたすべり線は、法尻部から約1.0mまで試行くさび法で得られたすべり 線とほぼ一致した.しかし、それよりも上部では大きく形状が異なる結果となった. 最後にケース3の結果を図8に示す.他の2ケースと 同様に法尻部付近は試行くさび法で得られたすべり線と 一致した.本ケースはケース1と同じ緩い地盤であるた め,受圧面の移動により斜面全体が変形し,引張亀裂が 斜面内で現れ,試行くさび法のすべり線と大きく異なる 形状となった.

(2) 土圧計測結果と試行すべり法の土圧の比較

受圧面に掛かる各位置の土圧(図5参照)およびこれ らを合計した土圧と受圧面の移動変位量の関係をケース 毎に図9に示す.なお、受圧面が移動する前の静止状態 での土圧計測結果も同時に示した.すべてのケースにお いて、受圧面の移動直後に土圧が減少した.これは、受 圧面の移動に対して地盤が主働化し、一時的に斜面が自 立していることを示している.しかしながら、その後崩 れた土塊が受圧面に作用し、土圧が増加した後、緩やか に減少した.ここで、合計の土圧が最大値を、本実験で の変位後の土圧とした.表2に試行くさび法にて得られ 表2 土圧の比較(実験結果と試行くさび法)

ケース	変位後の土圧 P _A (kN/m)	試行くさび法 による土圧 PA (kN/m)
1	25.4	35.4
2	31.7	35.5
3	15.7	25.8

た土圧と実験結果で得られた土圧をそれぞれ示す.実験 結果で得られた土圧は、試行くさび法で得られた土圧の 60%~90%程度であり、小さな値となった.特に緩い地 盤にて実施したケース1およびケース3は試行くさび法 で得られた土圧のそれぞれ約70%,約60%であり、試行 くさび法では、土圧を過大に見積もることとなる.