産業用機械より発生する磁界の測定事例

山口さち子*1 奥野 勉*1

近年,欧州の職業電磁界ばく露規制(Directive 2013/35/EU)に端を発して,職業磁界ばく露の定量化が求められて いる.そこで本研究では,mTレベルの比較的高い磁界発生が予見される産業用機械を選定し,装置から発生する磁界 環境の測定を実施した.測定対象は、①手持ち式抵抗溶接装置、②定置式抵抗溶接装置、③高周波電気炉、④アーク炉、 ⑤磁気探傷装置の5種類とした.測定装置は直交3軸コイル、コイル面積100 cm²のプローブを有する交流磁界測定装 置を使用した.特定の測定ポイントで発生磁界を記録し、磁界の周波数成分と強度を分析したのち、国際非電離放射線 防護員会(International Commission on Non-Ionizing Radiation Protection: ICNIRP)の2010年の低周波ガイドラ インとの適合性を周波数ごとに比較を行った.その結果、最大磁界が観察されたのは手持ち式抵抗溶接装置のケーブル 部分であり、また、一部の産業用機械では作業場所によっては ICNIRPガイドラインを超過することが示された.この ような場合、事業者および作業者側が取りうるアクションとしては、①磁界ばく露の少ない別の作業方法の提案、②磁 界発生の少ない機器の選択、③シールド対策、④適切な区面割及び立ち入り対策、⑤作業機器等の適切な保守プログラ ムの実施、⑥作業場及び作業ステーションの設計と配置の検討、⑦ばく露期間及び強度の制限(記録)があげられる. 一方で今後の課題として、一部の機械を除き磁界測定のための規格が立案されていないことから、これらの規格化や適 切な測定ガイダンスの制定が待たれる.

キーワード: 産業用機械, 磁界測定, 職業磁界ばく露, ICNIRP.

1 諸言

近年,欧州の職業電磁界ばく露規制(Directive 2013/35/EU,2013年6月26日付)」に端を発して,磁 界にばく露する労働者の防護のための,有効かつ効果的 なリスク評価実施が注目されている.その第一段階が職 業磁界ばく露の測定であり,ばく露源である産業用機械 より発生する磁界の定量化が求められている.

磁界の職業ばく露の生体影響については,主に静磁界 および変動する磁界によって生じる,一時的な影響(感 覚変化-目がチカチカする(磁気閃光:目への刺激)や, 筋肉の不随意運動(勝手にピクピクする)又は熱影響が 生じることが知られている^{2),3)}(図1).これらは,周波 数及び強度の組み合わせで決定されており,低周波~中 間周波では感覚変化,高周波では熱影響が主効果となる. このため,職場環境で発生している磁界測定においては, 周波数および強度の詳細な解析が必要である.

職業磁界の測定に関する調査では,英国放射線防護庁 (National Radiological Protection Board : NRPB) が 2002 年に実施した調査⁴と,中央労働災害防止協会 労働衛 生調査分析センターが行った調査があげられる⁵⁾.これ らの調査で,抵抗溶接や電気炉,亀裂検出装置(磁気探 傷装置)などから比較的高い磁界が発生していることが 明らかとなった.ここ数年で磁界ばく露ガイドラインの 改定が進められたこともあり^{2),6),7},改めてこれら産業 用機械から発生する磁界の測定とガイドライン適合性評 価が必要とされている.

*1 労働安全衛生総合研究所
 連絡先:〒214-8585 神奈川県川崎市多摩区長尾 6-21-1
 労働安全衛生総合研究所健康障害予防研究グループ 山口さち子*1
 E-mail: yamaguchi@h.jniosh.go.jp

これらの状況を鑑み、本研究では mT レベルの比較的 高い磁界発生が予見される産業用機械について、装置か ら発生する磁界環境の調査を実施した.本研究では、周 波数分析が可能な3軸コイル型磁界測定機を使用して、

勤務中のばく露磁界の強度と周波数を調査し、安全衛生

に生かすためのデータを得ることを目的とする.

2 方法

1) 測定対象および評価方法の概要

測定対象は、①手持ち式抵抗溶接装置、②定置式抵抗 溶接装置、③高周波電気炉(High Frequency Furnace: HF炉)、④アーク炉(Arc Furnace:注 今回はAF炉 と表記する)、⑤磁気探傷装置の5種類とした.計3社4 営業所で測定を行った.

評価方法の概要を図2に示す. Step1として,産業用 機械から発生する磁界を図3の装置を用いて測定する. 測定規格がある場合は,それに準ずるが,周囲の状況か ら改変した測定点を設けることもある(測定対象①手持 ち式抵抗溶接装置及び②定置式抵抗溶接装置:それぞれ 測定規格のうち一部のポイントを利用). Step2 として磁

図2 評価方法の概要

図3 測定装置

界の周波数成分と強度を分析する(2.4) 磁界の周波 数成分と強度の分析を参照のこと). Step3 として,国際 非電離放射線防護員会(International Commission on Non-Ionizing Radiation Protection: ICNIRP)の2010 年の低周波ガイドライン²⁾との適合性比較を行う(2.5) ガイドライン等との適合性の確認も参照のこと).

2) 測定装置

測定装置は直行 3 軸コイル, コイル面積 100 cm²のプローブを有する交流磁界測定装置(Combinova MEF3000:図3)を用い,測定条件は周波数特性:5 Hz ~400 kHz,測定レンジ:10 nT~10 mT (5 Hz~2 kHz) 及び10 nT~200 μT (2 kHZ~100 kHz)とした.

3) 測定方法

1. 手持ち式抵抗溶接装置

図4に測定条件および作業の様子を示す.抵抗溶接装置 から発生する磁界の測定手引書(BS EN 50505:2008) ⁸⁾を一部改編して行った(図4A).測定ポイントは,P1: 電極中心,P2:電極中心と,本体との中間地点,右及び 左に500 mm,P5:本体末端(電源側),中心から右及 び左に300 mmと,ケーブルとした.磁界プローブを抵

図 4 手持ち式抵抗溶接装置より発生する磁界の測定 A:測定 ポイント, B:作業の様子

図5 定置式抵抗溶接装置より発生する磁界の測定ポイント

抗溶接の特定のポイントに設置し,通電時(空打ち時) の磁界と,その磁界に含まれる周波数成分及び磁界強度 を算出した.溶接条件は,電流:10kA,通電時間:1 秒で測定対象の近傍に磁性体がない状況で行った.測定 は5回行いその平均値を求めた.作業の様子を図4Bに 示す.二次電源に繋がった電源ケーブルより電源が供給 され,手元の溶接装置で作業が行われた.

2. 定置式抵抗溶接装置

図5に測定条件を示す.抵抗溶接装置から発生する磁 界の測定手引書(BS EN 50505:2008)®を一部改編して 行った(図5).測定ポイントは,図5のP1-P3に図示 した.磁界プローブを抵抗溶接の特定のポイントに設置 し,通電時(空打ち時)の磁界と,その磁界に含まれる 周波数成分及び磁界強度を算出した.

図6 HF 炉より発生する磁界の測定の様子

図7 AF 炉より発生する磁界の測定の様子

溶接条件は,電流:13 kA,通電時間:1 秒で,測定対 象の近傍に極力磁性体がない状況で行った.測定は5回 行い,その平均値を求めた.

3. HF 炉

HF 炉では、工場外(バックグラウンドレベル)、材料 投入前の通電時の磁界を測定した.測定は5回行い、そ の平均値を求めた.測定の様子を図6に示す.HF 炉で は磁界の測定規格がないため、立ち入り可能エリアや発 生源の位置を考慮して独自に測定ポイントを設定した. 測定ポイントについては結果を参照されたい(図10B及 びC).

4. AF 炉

AF 炉については、通電前(pre)、電極位置がシャッタ 一前部にあると推定される1回目、電極位置が作業者上

図8 磁気探傷装置より発生する磁界の測定の様子

部にあると推定される2回目の計3回測定を行った.測 定は5回行いその平均値を求めた.測定の様子を図7に 示す.AF炉では磁界の測定規格がないため,立ち入り 可能エリアや発生源の位置を考慮して独自に測定ポイン トを設定した.測定ポイントについては結果を参照され たい(図12-14)

5. 磁気探傷装置

磁気探傷装置では、被検体(探傷のチェックを受ける 製品)なしの状況で通電のみ行い磁界を測定した.測定 は5回行い、その平均値を求めた.磁気探傷装置では磁 界の測定規格がないため、立ち入り可能エリアや発生源 の位置を考慮して独自に測定ポイントを設定した.測定 ポイントについては結果を参照されたい(図15).測定 の様子を図8に示す.

4) 磁界の周波数成分と強度の分析

測定データは、測定機付属のソフトウェア(MEF3000
 PC program)を使用して、3軸の磁界の合成値を計算した。その後、同ソフトウェアを利用して、高速フーリエ変換(Fast Fourier Transform: FFT)による周波数成分の分解と磁界値の検出を行った。

5) ガイドライン等との適合性の確認

各周波数成分の磁界値について, ICNIRP が 2010 年 に公開した低周波ガイドライン²⁾との適合性を確認した. ICNIRP ガイドラインは生理学的な現象に基づき作成さ れた磁界ばく露のガイドラインであり,数値計算で知り える基本制限(体内誘導電界:V/m)と,基本制限に適 合するための測定可能な物理量である参考レベル(磁束 密度など)から構成される.制限値は低周波においては 磁気閃光等の神経刺激作用から人体を防護するために安 全率を含んで設定されており,制限値を超過した磁界へ のばく露がすぐに健康影響を発生するものではないが, 神経刺激リスクを低下させるために制限値以下にするこ とが好ましい.今回は磁束密度との適合性を検討した. 測定された磁束密度(RMS値)を周波数ごとにガイド ラインとの適合性を行うが,ばく露磁界が複数の周波数 にわたる場合,全ての周波数において限度値以下で,か つ,測定された磁界/限度値の比が,全ての周波数につ いて足して1以下になる必要がある(図2).

3. 結果及び考察

1) 手持ち式抵抗溶接装置

手持ち式抵抗溶接装置から発生する磁界の FFT 解析 結果例 (測定ポイント P5) と実測値を図 9 に示す.FFT 解析の結果, 60 Hz (商用周波数) にピークが観察され た (図 9A). ばく露磁界の実測値は P1:617.4±76.9 μT, P2:795.3±10.8 μT, P5:1196.6±12.6 μT, ケーブル: 13653.4±844.2 μT であった (図 9B).

それぞれの測定ポイントにおける ICNIRP ガイドライン 適合性は、基準値(60 Hz: 1mT)に対して P1: 61.7±6.5%, P2:78.0±1.1%, P5:117.3±1.2%, ケー ブル:1491.5±84.0%であった. P5 及びケーブルにおい てガイドラインを超える値が検出された.

図 9 手持ち式抵抗溶接装置から発生する磁界の FFT 解析結果 例と実測値 A:FFT 解析結果例 (測定ポイント P5), B: 各 測定ポイントにおける実測値

2) 定置式抵抗溶接装置

定置式抵抗溶接装置から発生する磁界のFFT 解析の 結果,50 Hz(商用周波数)と150 Hz が検出された. 磁界の実測値はP1:2209.3±100.3 μT,P2:2040.9± 63.1 μT,P3:1924.5±207.4 μT であった.

50 Hz, 150 Hz の周波数成分の磁界について, それぞ れガイドライン値(1 mT)との適合性を検討した結果, P1:238.8±10.9%, P2:222.5±6.2%, P3:213.1±28.4% であった. 全ての測定ポイントでガイドライン値の超過 が観察された.

3) HF 炉

HF 炉から発生する磁界の FFT 解析結果例 (測定ポイント 6) を図 10A に,測定結果及び結果を元にした ICNIRP ガイドライン超過率 (ガイドラインと同等の値の場合が 100%となる)及び適合度を表1に示す.また,結果の概要図を図 10B 及び C に示す.

測定された周波数成分は約400 Hz と約450 Hz で, 実際の波形を見るとこの2つのピークの他にも様々な周 波数成分が検出されたが(図10A),最終的にはICNIRP ガイドラインとも適合していた(表1).また,工場外に おいては,測定された周波数成分は,地磁気の動揺を検 出した(測定時のケーブルの揺れなど)非常に低い周波 数であったが(data not shown), ICNIRP ガイドライ ンとも適合していた(表1).

工場外においては一部の測定ポイントで2μTを記録 したが,他のポイントの測定結果から考えると一時的な ノイズと考えられる(図10B).HF 炉については,測定 場所が炉の上のため,磁界発生源が足元にあると考えら れたが,実際に低い測定点ほど高い磁界値を示した(表 1,図10C).

4) AF 炉

AF 炉から発生する磁界の FFT 解析結果例 (測定ポイント7)を図11に,測定結果及び結果を元にした ICNIRP ガイドライン超過率及び適合度を表2に示す.また,結 果の概要図を図12-14に示す.

測定された周波数成分は60 Hzと高調波の180 Hzで、 実際の波形を見るとこの2つのピークの他にも様々な周 波数成分が検出されたが(図11),最終的には ICNIRP ガイドラインとも適合していた(表2).

今回,電極の推定位置を元に二回測定を行った.一回 目の測定は,電極がシャッターの前にあると推定される 時機で,二回目の測定は,電極が作業者の上方にあると 推定される時機であった.測定機器は接地して設置して あるため,一回目の測定では高さ170 cm が最も高い値 を示し,位置が下になるにつれて漏洩磁界は低くなると 予想されたが,実際にそのような傾向を示した.また, 電極(実際には作業者の立ち入り区間に設置されている シャッター)からの距離を取ることで漏洩磁界の減衰が 観察された.

			表1 工場/	外及び HF 炉にお	ける磁界測定結果、	値は平均±S.D.(μ7	いで示す.			
		Tota	la		1 st peak			$2^{ m nd}$ peak		
No.	測定点	磁束密度 (µT)	ICNIRP 超過	周波数(Hz)	磁束密度 (µT)	ICNIRP 超過	周波数(Hz)	磁束密度 (μT)	ICNIRP 超過	適合性
			(%)			(%)			(%)	
1	工場外	0.0 ± 0.0	0	QI	0.0 ± 0.0	0	ฉ	0.0 ± 0.0	0	問題なし
2	工場外	0.0 ± 0.0	0	QI	0.0 ± 0.0	0	ณ	0.0 ± 0.0	0	問題なし
က	工場外	0.0 ± 0.0	0	QI	0.0 ± 0.0	0	ณ	0.0 ± 0.0	0	問題なし
4	HF 炉 170 cm	11.7 ± 0.1	01	393.42	11.6 ± 0.1	61	454.1	1.2 ± 0.0	0	問題なし
NO.	HF 炉 130 cm	17.2 ± 0.1	ŝ	393.42	17.1 ± 0.0	61	454.1	$1.4{\pm}0.0$	0	問題なし
9	HF 炉 50 cm	32.0 ± 0.1	5	393.42	31.9 ± 0.0	4	454.1	2.2 ± 0.2	0	問題なし
			表 2	AF 炉における碌	<u></u> 家界測定結果、値は平	z均士S.D.(μT)で示	वे.			
		Tota	lı		1st peak			2 nd peak		
No.	測定点	磁束密度 (µT)	ICNIRP 超過 (%)	周波数(Hz)	磁東密度 (µT)	ICNIRP 超過 (%)	周波数(Hz)	磁東密度 (μT)	ICNIRP 超過 (%)	適合性
1	AF 炉 P1 170 cm (pre)	0.1 ± 0.0	0	5.0 - 6.7	0.0 ± 0.0	0	5.0 - 7.5	0.0 ± 0.0	0	問題なし
7	$AF \not \equiv P1 130 \text{ cm (pre)}$	$0.1 {\pm} 0.0$	0	5.0 - 6.7	0.0 ± 0.0	0	ฉ	0.0 ± 0.0	0	問題なし
က	AF $/\!\!\!/ $ P1 56 cm (pre)	0.1 ± 0.0	0	õ	0.0 ± 0.0	0	5.9	0.0 ± 0.0	0	問題なし
4	AF 炉 P2 170 cm (pre)	0.1 ± 0.0	0	ũ	0.0 ± 0.0	0	5.9	0.0 ± 0.0	0	問題なし
2	AF $/\!\!\!/ = \mathrm{P2}$ 130 cm (pre)	0.1 ± 0.0	0	Ũ	0.0 ± 0.0	0	5.9	$0.0\!\pm\!0.0$	0	問題なし
9	AF 炉 P2 56cm (pre)	0.1 ± 0.0	0	õ	0.0 ± 0.0	0	5.9	0.0 ± 0.0	0	問題なし
7	AF 炉 P1 170 cm (1st)	232.5 ± 3.3	23	60.7	226.0 ± 3.2	23	57.8	$51.3 {\pm} 1.5$	٥ĩ	問題なし
80	AF 炉 P1 130 cm (1st)	221.2 ± 6.5	21	60.7	214.6 ± 5.2	21	57.8	$49.4{\pm}5.5$	ĩO	問題なし
6	AF $/\!\!\!/$ P1 56 cm (1st)	$165.6\!\pm\!2.6$	16	60.7	160.6 ± 2.4	16	57.8	36.7 ± 2.9	4	問題なし
10	AF 炉 P2 170 cm (1st)	151.3 ± 4.1	15	60.7	147.4 ± 3.9	15	57.8	32.5 ± 1.9	က	問題なし
11	AF $/\!\!\!/$ P2 130 cm (1st)	$139.7\!\pm\!6.5$	14	60.7	$135.8 {\pm} 6.3$	14	57.8	$29.8{\pm}0.9$	က	問題なし
12	AF $/\!\!\!/ ext{P2}$ $\mathrm{P2}$ $56~\mathrm{cm}~\mathrm{(1st)}$	$125.9\!\pm\!2.9$	12	60.7	122.3 ± 2.7	12	57.8	27.0 ± 1.4	က	問題なし
13	AF // P1 170 cm (2nd)	152.5 ± 3.6	15	60.7	147.6 ± 4.0	15	57.8	$33.1 {\pm} 1.8$	က	問題なし
14	AF $/\!\!\!\!/$ P1 130 cm (2nd)	146.3 ± 5.8	14	60.7	141.5 ± 5.4	14	57.8	32.2 ± 1.9	က	問題なし
15	AF $/\!\!\!/ $ P1 56 cm (2nd)	125.4 ± 4.3	12	60.7	121.5 ± 4.4	12	57.8	27.4 ± 1.9	က	問題なし
16	AF // $\mathrm{P2}~170~\mathrm{cm}~(\mathrm{2nd}~)$	$234.2 {\pm} 6.6$	23	60.7	226.6 ± 6.7	23	57.8	51.7 ± 2.7	Qí	問題なし
17	AF $\gg 130~\mathrm{cm}~(2\mathrm{nd}~)$	199.9 ± 20.4	24	60.7	244.0 ± 110.9	24	57.8	$93.8{\pm}75.4$	9	問題なし
18	AF $/\!$	164.4 ± 8.0	16	60.7	159.9 ± 8.1	16	57.8	$34.5 {\pm} 1.8$	က	問題なし

産業用機械より発生する磁界の測定事例

図 10 HF 炉から発生する磁界の測定結果 A:FFT 解析結果
 例 (測定ポイント 6), B:工場外における測定結果, C:HF 炉
 における測定結果

図 12 AF 炉から発生する磁界の測定結果(通電前) A:測 定ポイント P1, B:測定ポイント P2

一方で、二回目の測定でも一回目と同様の傾向を示す と予想したが、高さ方向の傾向は同等であったが、距離 方向の漏洩磁界についてはむしろ電極から距離を置いた P2において漏洩磁界の上昇が観察された.これについて は、電極位置や磁性体(材料、周辺金属)が存在するこ とによる磁界分布の歪みでないかと推定される.

図 13 AF 炉から発生する磁界の測定結果(1回目:電極下部) A:測定ポイントP1, B:測定ポイントP2

図 14 AF 炉から発生する磁界の測定結果(2回目:電極上部) A:測定ポイントP1, B:測定ポイントP2

5) 磁気探傷装置

磁気探傷装置から発生する磁界のFFT 解析結果例(測定ポイント7)を図15Aに、測定結果及び結果を元にしたICNIRPガイドライン超過率及び適合度を表3に示す. また、結果の概要図を図15B及びCに示す.

測定された周波数成分は 60 Hz と高調波である 180 Hz で,実際の波形を見るとこの 2 つのピークの他にも様々 な周波数成分が検出された (図 15A).

通電前の状況においても 0.1 - 0.3 μ T 程度の装置から の漏洩磁界が観察され(図 15B),通電中には,装置から の漏洩磁界は 111.3 - 461.4 μ T に上昇した(表 3).測定箇 所における違いについては,測定ポイント No.7 が最も漏 洩磁界が高く(461.4 μ T),測定ポイント No.9-11 と離れ るに従って減衰した.測定ポイント No.7-11 への減衰率 は-48 %(測定ポイント No.9)及び-76 %(測定ポイント No.11)であった(図 15C).

P1 において, ICNIRP ガイドラインとほぼ同等レベル の漏洩磁界が観察されたが,コイルから距離をおくこと で,ガイドラインと十分に適合可能なレベルまで減衰し ていた(図15C).

今回の装置の探傷方式はコイル法と推測されるため, 漏洩磁界の発生源は電源装置及び探傷用コイルの2か所 が考えられる.今回の測定においては,測定ポイント No.7 が最も漏洩磁界の影響を受けやすい場所であった. 探傷用コイルも磁化電源装置も作業者の右手方向に設置 されていると予想されることから,対処方法としては, これら二つの装置から作業者の左手方向に距離を取るこ とができるよう(例:測定ポイント No.9 や11 など),機 械の配置を変えることなどがあげられる.

NRPB の報告書では、抵抗溶接使用時の胴体及び頭部、 亀裂検出装置(磁気探傷装置)の使用時の胴体部分にお いて当時の ICNIRP ガイドライン⁴⁾の超過が観察されて いるが電気炉 (アーク炉) では超過していない 4). また, 中災防の報告では同じく電気炉では ICNIRP ガイドライ ン5の超過は観察されなかったものの、やはり抵抗溶接 時に超過が観察されている(最大値 3490 µT).本研究の 結果もこれらと同様の傾向を示すものであるが、測定条 件などが異なるため一概に比較することは容易でない. 現行では特定の産業用機械以外は発生する磁界に対する 測定規格がないため、このことが実態調査を難行化させ る要因である. ただし, Directive 2013/35/EU¹⁾では, 加盟国に職業電磁界ばく露の国内法転換を2017年6月 までに義務付けているが、2016年末までに測定方法など の手法が発表される予定であり、このガイダンスの発表 が待たれる.

	I) ICNIRP 超過 適合性 (%)	0 問題なし	0 間題なし	0 問題なし	0 間題なし	0 問題なし	0 問題なし	13 問題なし	10 問題なし	5 問題なし	6 問題なし	3 問題なし	3 問題なし
	磁束密度 (μ	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	125.5 ± 8.7	97.9 ± 15.9	50.1 ± 1.7	57.3 ± 0.7	25.0 ± 0.3	33.2 ± 0.5
2 nd peak	周波数(Hz)	5.9 - 7.5	Q	6.7	5.9	5.9	5.0 - 6.7	182.5	182.5	57.8	182.5	182.5	182.5
	ICNIRP 超過 (%)	0	0	0	0	0	0	43	39	23	23	11	14
	磁束密度 (µT)	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	$0.0 {\pm} 0.0$	0.0 ± 0.0	$431.8 {\pm} 24.6$	385.1 ± 18.5	226.3 ± 5.8	$230.1 {\pm} 1.5$	105.4 ± 1.4	138.6 ± 1.7
1st peak	周波数(Hz)	5.0 - 7.5	5.0 - 6.7	5.0 - 7.5	Û	õ	ũ	60.7	60.7	60.7	60.7	60.7	60.7
	ICNIRP 超過 (%)	0	0	0	0	0	0	66	84	47	51	23	30
Total	磁束密度 (µT)	0.1 ± 0.0	$0.3\!\pm\!0.2$	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	0.1 ± 0.0	461.4 ± 26.9	408.3 ± 21.7	$237.8 {\pm} 6.0$	243.9 ± 1.6	111.3 ± 1.5	146.5 ± 1.9
	測定点	P1 150 cm (pre)	P1 100 cm (pre)	P2 150 cm (pre)	P2 100 cm (pre)	$\operatorname{P3}150\mathrm{cm}(\mathrm{pre})$	P3 100 cm (pre)	$P1 150 \mathrm{cm}$	P1 100 cm	m P2~150~cm	$P2 100 \mathrm{cm}$	m P3~150~cm	P3 100 cm
	No.	1	2	c,	4	5	9	7	8	6	10	11	12

R
Ê
D.(
ŝ
赵.
すれ
一
耒
ぼ
影影
酸
けい
£
副
德波
既
廢

- 44 -

図 15 磁気探傷装置から発生する磁界の測定結果 A:FFT 解 析結果例 (測定ポイント7), B:作業前, C:作業時

本研究では、一部の産業用機械において作業場所によっては ICNIRP ガイドラインを超過しうる可能性があることを示した(図15C).このような場合、事業者および作業者側が取りうるアクションとしては、Directive 2013/35/EU¹¹を参考にすると以下のとおりである.

- 1. 磁界ばく露の少ない別の作業方法の提案
- 2. 磁界発生の少ない機器の選択
- シールド対策(必要に応じてインターロックや遮蔽 など)
- 適切な区画割及び立ち入り対策(ラベル,床標識, バリア)

- 5. 作業機器,作業場,および作業ステーションシステ ムの適切な保守プログラムの実施
- 6. 作業場及び作業ステーションの設計と配置の検討
- 7. ばく露期間及び強度の制限(記録)

2及び3のような発生源対策は既存装置の使用を続け る限り難しい場合はあるが、その場合は5のように磁界 ばく露が少なくなるよう保守管理を行ったり、1、4及び 6のようなばく露源からの距離の保持に取り組むことは 可能である.必要に応じて実施されたい.実際、磁気探 傷装置では、作業場をばく露源より距離を置くよう移動 させる対策を実施した.また、本研究は7のようなばく 露期間や強度を知るうえでの基礎情報であり、今後職業 ばく露対策が求められる際の知見になりうると考えられ る.

4 結論

本研究ではmTレベルの比較的高い磁界発生が予見さ れる産業用機械について,装置から発生する磁界環境の 調査を実施した.その結果,最大磁界が観察されたのは 手持ち式抵抗溶接装置のケーブル部分であり,一部の産 業用機械では作業場所によってはICNIRPガイドライン を超過することが示された.一方で,一部の機械を除き 測定規格が立案されていないことから,これらの産業用 機械から発生する磁界の測定方法について今後の規格化 が待たれる.また,本研究での測定結果は,作業者のば く露期間や強度を知るうえでの基礎情報であり,今後職 業ばく露対策が求められる際の知見になりうると考えら れる.

5 謝辞

本研究では産業医科大学産業生態科学研究所 作業関 連疾患予防学研究室 筒井保博先生,独立行政法人 労 働安全衛生総合研究所 時澤 健氏にご協力を賜りまし た.ここにお礼申し上げます.

参考文献

- EU directive 2013. Directive 2013/35/EU of the European parliament and of the council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (20th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC) and repealing Directive 2004/40/EC. Official Journal of the European Union, Luxembourg, Luxembourg.
- International Commission on Non-Ionizing Radiation Protection. Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1 Hz - 100 kHz). 2010; Health Physics 99:818-836.

- World Health Organization, Extremely Low Frequency Fields. Environmental Health Criteria Monograph No.238. 2007.
- Cooper TG. Occupational Exposure to Electric and Magnetic Fields in the Context of the ICNIRP Guidelines. NRPB-W24. 2002.
- 5) 中央労働災害防止協会 労働衛生調査分析センター. 電磁 場ばく露に関する調査研究報告. 2004.
- International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to static magnetic fields. 2009; Health Physics. 96:504-514.
- International Commission on Non-Ionizing Radiation Protection. Guidelines for Limiting Exposure to Electric Fields Induced by Movement of the Human Body in a Static Magnetic Field and by Time-Varying Magnetic Fields below 1 Hz. 2014; Health Physics. 106(3):418-425.
- BS EN 50505. Basic standard for the evaluation of human exposure to electromagnetic fields from equipment for resistance welding and allied processes. 2008.